从大学讲师到首席院士_第三百五十七章 黎曼猜想只是附带成果? 首页

字体:      护眼 关灯

上一章 目录 下一页

   第三百五十七章 黎曼猜想只是附带成果? (第1/3页)

    【任务四。】

    【研究项目名称:寻找最小对节点函数的交线复平面与黎曼猜想之间的相关性(难度:S)。】

    【灵感值:80。】

    看着系统任务上显示的灵感值数据,王浩的眼睛一动也不动,脑子里仔细的思考起来。

    系统提示了灵感之增加,证明他的思路肯定是正确的,同时'80'点的灵感也说明,还没能完成研究,还有需要解决的难题。

    而且,难题不止一个。

    王浩快速想到了三个需要破解的问题,第一个已经有了明确的思路,就是证明'黎曼ζ函数的所有非平凡零,都被红线对应的复平面包含其中。

    后续还需要解决的有两点,一个是证明最小质数对节点函数的所有的质数点位,都处在红线对应的复平面中'。

    第二个则是「联系数字规律、筛法,或是其他数论方法,证明最小质数对节点函数,代入任何质数都会求解得出对应的质数」。

    最后一个问题,实际上也是怀尔斯提出的'王氏猜想第一问题」。

    虽然证明很可能和质量的塑造关系不大,但王浩还是非常有动力去研究,因为其代表着非凡的数学意义。

    另外,所有证明完成以后,也能顺带证明黎曼猜想。黎曼猜想,可以说就是研究的'附带成果了。

    这主要是因为,红线所对应的复平面存在无数的质数点位,其覆盖量远远比黎曼猜想要多的多,黎曼猜想被包含在其中,自然也只能是附带成果。

    在有了明确思路以后,王浩马上召集了两员大将一丁志强和邱会安。

    他也快速交代了工作,「现在我已经有了方向,我们第一步就是要证明,黎曼了函数的所有非平凡零点都被包含在交线复平面中.....」

    于此同时。

    王浩所做的高次质点函数报告,影响也正在逐渐发酵。

    这次报告是对外公开的,报告的视频被公开的发布出去,所有人都可以免费观看,好多普通人也点开视频扫了几眼。

    虽然大多数人听不懂王浩将的是什么,但不影响他们打开视频凑个热闹,也顺带沾染一些学术气息。

    整个报告的视频中,最引人关注的自然不是内容,而是最开始上台的丁志强,网络上都有好多人讨论起了丁志强。

    「那是王浩大神最看重的学生!」

    「这么重要的报告都让丁志强上场,而且也只有丁志强上场!」

    「据说研究是王浩自己做的,他让丁志强做开头部分的解释,足以说明对丁志强的重视了。」

    「不过这个小胖子长得一般般,眼神还有点猥琐....王浩大神到底看重他什么?」「以貌取人了啊!」

    「丁志强再不行也是王浩的学生,也是非常优秀的数学博士,智商绝对超越了99.9%以上的人....」

    最初丁志强就是因为上台帮忙做报告,知道他是王浩看重的学生,近而引起了网络上的广泛热议。

    很多人查了丁志强的资料以后,就发现丁志强可不是毫无名气,他参与过好多大型的研究,一些顶尖的成果都有挂名。

    因为一直在计算组工作,十几份相当有含金量的半拓扑理论的元素匹配计算论文,也都挂着丁志强的名字。

    在著名的论文网站上,查找丁志强能找到超过三十篇论文。

    这些论文中,有的是计算组的研究,有的是王浩的研究,丁志强个人也有几篇论文发表,其中有三篇还入选了SCI。

    只看论文网站相关的资料,就能知道丁志强到底有多优秀了,尤其他还只是一个在读博士。

    这

    个履历绝对可以称作是辉煌了!

    不过在王浩的几个学生中,丁志强并不十分突出,甚至可以说是最差的一个,以学术成果影响力的角度来看,丁志强个人完成的研究,才是真正属于他自己的成果。

    其他包括计算组、王浩的研究,他都只是挂个名字,只能说参与了研究工作,至于贡献有多大就很难说了。

    很多影响力大的论文,学术界也只关心第一作者和通讯作者,其他作者都只是挂名'。王浩的其他几个学生,海伦和陈蒙檬的一篇《强湮灭力》,就能盖过丁志强的所有成果。

    一直到现在,《强湮灭力》论文依旧被认为是强湮灭力研究方向的理论基础,还没有其他的理论研究能够超越覆盖。

    另一个学生,邱会安,他完成了《勒让德猜想的证明》,也因此获得了数学会颁发的钟家庆数学奖。

    那还是在读研期间完成的。

    邱会安也同样有好几篇其他类型的SCI论文,数学方向的成果也是强于丁志强的。总之,丁志强非常优秀,但和同门相比,也只能说是'一般」。

    但显然,王浩非常看好丁志强。

    他不只是让丁志强帮忙起了一个开头,而且还让丁志强说明了一下自己对于高次质点函数研究的想法,给了他在众多数学大佬们,前面展示自己的机会。

   

请记住本站永久域名

地址1→wodesimi.com
地址2→simishuwu.com
地址3→simishuwu.github.io
邮箱地址→simishuwu.com@gmail.com

加入书签 我的书架

上一章 目录 下一页