分卷阅读122 (第1/2页)
考生:…… 第一道题就上这种难度!!! 有人找不到切入点,开始抱着侥幸心理看第二道题,有时候吧,出题人不知道出于什么心理,第一道题就给考生一个下马威,最后一道压轴题绝对不可能简单,最简单可能是中间那道题。 然后看到了第二道题。 一棱柱以A1,A2,A3,A4,A5,与B1,B2,B3,B4,B5,为上下底,这两个多边形的每一条边及没每一条线段Ai,Bj(i,j=1,2,3,4,5)均涂上红色或者绿色,每一个棱柱顶点为顶点的,以已涂找那个色的线段为边的三角形均有两条边颜色不同,证明,上下底的10条边颜色一定相同。 考生:…… 他们忽然没有勇气去看最后的压轴题了。 他们有种感觉,自己可能不是在选拔省队成员的名单上,而是在冬令营的选拔赛上。 总共就三十个考生,一个考场就绰绰有余了,老师也不用挨个考场巡视了,站在讲台上就能一览无余。 也把每个考生脸上的绝望、不可置信收入眼底。 考场上空迅速的凝聚了一大片的阴云,把整个考场都笼罩了下来,仔细听听,似乎还能听到考生的呻、吟声。 他们都是省数会成员,自然看过题目了,也知道会长是出于什么心理弄出来的这题,现在看到,有些于心不忍起来了,“这是不是太难了……” 控诉的看向了会长,如果这次省队分数跌破20分,他们面子也不好看啊! 会长面对这目光轻轻的咳了咳,装作看不到,像是随意,其实是笔直的到了洛叶身边。 他要看看她到底能用多长时间做出来。 而洛叶想的是,出题人果然十分偏爱证明题,今天的三道题两道题都是证明题,最后一题是不等式。 而且吧,把第一道题和第二道题放在一起,实在不算高明。 第二道题明显是组合数学中的染色问题,而想到了染色,这给了洛叶提供了一个思路,如何证明第一道题。 在很多的问题中,为了构造不变量,都习惯用染色的方法对问题进行分类,每一类就由一种颜色的对象组成。 证明:借助红色、黄色,把问题转化为了以下形式,将E中点染成红色或者蓝色,证明一定存在一个直角三角形,是哪个顶点的颜色相同…… 看到的这的时候,会长的脸微变,洛叶发现的问题,也被他给发现了!失策啊!他忘了第一题的证明方法还有这么一种方法! 他居然会犯这种低级错误! 会长不由的有些吐血。而且看过卷子的人都没有发现,而就让洛叶发现了!丢人啊!会长几乎要扶额了,他回去要看看明天的试题,可千万不要有这种错误! 同时,眼睛不着痕迹的看了一圈,发现绝大多数人都还是愁眉苦脸的,根本没从第二道题中想起来还能这么做,松了口气,随后又觉得不对了,你怎么就能这么快的发现呢! 这才开始考试多长时间?你居然已经要写完了第一道题了! 没错,在会长这会儿反思的时候,洛叶已经顺着思路第一道题写了过半了,毕竟找对了思路,其余的就好说了,这道题的步骤又不怎么长。 “……如果BC边上,除了Q点整外还有红色点X,那么RQX组成红色顶点的指教三角形。如
请记住本站永久域名
地址1→wodesimi.com
地址2→simishuwu.com
地址3→simishuwu.github.io
邮箱地址→simishuwu.com@gmail.com